Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimate

by Patricia Alonso-Ruiz, Fabrice Baudoin, Li Chen, Luke Rogers, Nageswari Shanmugalingam, Alexander Teplyaev

With a view toward fractal spaces, by using a Korevaar-Schoen space approach, we introduce the class of bounded variation (BV) functions in a general framework of strongly local Dirichlet spaces with a heat kernel satisfying sub-Gaussian estimates. Under a weak Bakry-Émery curvature type condition, which is new in this setting, this BV class is identified with a heat semigroup based Besov class. As a consequence of this identification, properties of BV functions and associated BV measures are studied in detail. In particular, we prove co-area formulas, global $$L^1$$ Sobolev embeddings and isoperimetric inequalities. It is shown that for nested fractals or their direct products the BV class we define is dense in $$L^1$$. The examples of the unbounded Vicsek set, unbounded Sierpinski gasket and unbounded Sierpinski carpet are discussed.

Arxiv Preprint version